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It is shown that Maxwell’s equation cannot be put into a spinor form that is equivalent
to Dirac’s equation. First of all, the spinorψ in the representationEF = ψEuψ̄ of the
electromagnetic field bivector depends on only three independent complex components
whereas the Dirac spinor depends on four. Second, Dirac’s equation implies a complex
structure specific to spin 1/2 particles that has no counterpart in Maxwell’s equation.
This complex structure makes fermions essentially different from bosons and therefore
insures that there is no physically meaningful way to transform Maxwell’s and Dirac’s
equations into each other.
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1. INTRODUCTION

The conventional view is that spin 1 and spin 1/2 particles belong to distinct
irreducible representations of the Poincar´e group, so that there should be no con-
nection between the Maxwell and Dirac equations describing the dynamics of
these particles.

However, it is well known that Maxwell’s and Dirac’s equations can be written
in a number of different forms, and that in some of them these equations look very
similar (e.g., Fushchich and Nikitin, 1987; Good, 1957; Kobe, 1999; Moses, 1959;
Rodrigues and Capelas de Oliviera, 1990; Sachs and Schwebel, 1962). This has
led to speculations on the possibility that these similarities could stem from a
relationship that would be not merely formal but more profound (Campolattaro,
1990, 1997), or that in some sense Maxwell’s and Dirac’s equations could even be
“equivalent” (Rodrigues and Vaz, 1998; Vaz and Rodrigues, 1993, 1997).

The purpose of this paper is to investigate these possibilities and to give some
arguments confirming that these formal similarities cannot lead to a physically
meaningful identification of Maxwell’s and Dirac’s equations. To facilitate this

1 Independent Scientific Research Institute, Box 30, CH-1211 Geneva-12, Switzerland; e-mail:
gsponer@vtx.ch.

689

0020-7748/02/0400-0689/0C© 2002 Plenum Publishing Corporation



P1: GDP/FYJ

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370724 April 9, 2002 17:39 Style file version Nov. 19th, 1999

690 Gsponer

investigation, and to make all calculations explicit, Lanczos’s biquaternionic for-
mulation of Maxwells’ and Dirac’s equations will be used (Gsponer and Hurni,
1998, 2001; Lanczos, 1929). The mathematical advantages of this formalism
(which uses only complex numbers and the quaternion algebra) is that it is irre-
ducible in the sense that, compared to formulations using larger Clifford algebras,
the number of explicit components, symbols, and operations is minimal. More-
over, like all formulations based on Clifford algebras, most calculations are in
general simpler than with the standard formulations based on tensors, spinors, and
matrices.

2. THE ELECTROMAGNETIC FIELD AND MAXWELL’S
EQUATION IN SPINOR FORM

The starting point of Campolattaro’s and Rodrigues’s formulations of
Maxwell’s equation is to write the electromagnetic field in spinor form using
the standardγ -matrices formalism (Campolattaro, 1990)

Fµν ≡ 9̄Sµν9, (1)

or the Clifford bundle formalism of Vaz and Rodrigues (1993, 1997)

F ≡ ψγ21ψ
∼ (2)

where the involution ( )∼ is the reversion operation in the Clifford algebra.
Maxwell’s first and second equations are then written

∂µ9̄γ
5Sµν9 = 0, ∂µ9̄Sµν9 = j µ, (3)

or, respectively,

∂ψγ21ψ
∼ − (∂ψγ21ψ

∼)∼ = 0, ∂ψγ21ψ
∼ + (∂ψγ21ψ

∼)∼ = 2J . (4)

Equations (3) and (4) are strictly equivalent to Maxwell’s equations. However,
the spinors9 or ψ arenot equivalent to a Dirac spinor because they have only
six independent real components while the Dirac spinor has eight. To see this
explicitly, we rewrite (2) in the biquaternion formalism

EF = EE + i EB ≡ ψEuψ̄ = ρ eiβLEuL̄ (5)

whereEu is a constant unit vector,L a unit biquaternion, and the complex factor
ρ eiβ corresponds to a duality transformation (Rainich, 1925). This representation
is general because any non-null electromagnetic field can always be obtained by
means of a duality transformation and of a Lorentz transformationL ( ) L̄ from a ref-
erence frame in which the electric and magnetic field vectors are parallel (Landau
and Lifshitz, 1975, see Sections 24 and 25; Misneret al., 1970, see Exercise 20.7).

However, expressions (1), (2), and (5) are invariant under any gauge trans-
formation of9, ψ , orψ which commutes withSµν , γ21, or Eu. For instance, the
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substitutionL→ Lexp(cEu) with c ∈ C leaves (5) invariant. Therefore, the effec-
tive Lorentz transformation in (5) depends not on six but just on four parameters.
This can be seen explicitly by solving (5) forL. It comes

L =
Ef + Eu√

2(1+ Ef · Eu)
(6)

where Ef is the unit vector such thatEF = ρ eiβ Ef . This expression, which was
first derived by G¨ursey (1956, p. 167), confirms that the spinorψ = √ρ eiβ/2L
associated with an electromagnetic field has three complex components, and not
four like a Dirac spinor.

3. MAXWELL’S EQUATION IN DIRAC-LIKE FORM

By a number of lengthy tensor manipulations Campolattaro (1990) suc-
ceeded in reducing equations (2) to a single nonlinear equation in which the
four-gradient of the spinor9 appears on one side, and in which the nonlin-
earity appears on the other side as a complicated variable factor that would be
the mass if9 was a Dirac field. The same calculation was repeated by Vaz
and Rodrigues (1993) who confirmed the power of the Clifford number for-
malism by deriving an equivalent equation in a very straightforward manner. In
the formalism of Rodrigues (1997, 1998), Maxwell’s equations (4) are equivalent
to the nonlinear equation

∂ψγ21 = exp(γ5β)

ρ

[
1

2
J + ( j + γ5g)

]
ψ (7)

wherej = γ µ〈(∂µψ)γ21ψ
∼〉 andg = γ µ〈(∂µψ)γ5γ21ψ

∼〉. In the case whereJ =
0, and provided thatρ , β, j , andg are constants, this expression would be similar
to Dirac’s equation, which in Rodrigues’s formalism is

∂ψDγ21 = mψD. (8)

However, sinceψ in (7) has only six real functions in its components, it cannot
be made equivalent to (8) in the general case where the Dirac spinorψD has eight
independent components. For the same reason, contrary to what Campolattaro
and Rodrigues tried to do, it is not possible to find nontrivial cases in which
the mass term in Maxwell’s equation in spinor form becomes a constant. In
particular, it is not possible to use constraints such as∂ · j = 0 and∂ · g = 0,
because they reduce the number of independent real components from six to
four.
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4. INTRINSIC DIFFERENCE BETWEEN MAXWELL’S
AND DIRAC’S EQUATIONS

Let us translate Eqs. (4) and (8) into the biquaternion formalism (Gsponer
and Hurni, 1998, 2001). Maxwell’s equations are then

∇ EF − EF∼∇ = 0, ∇ EF + EF∼∇ = 2J, (9)

and Dirac’s equation becomes theDirac–Lanczos equation(Lanczos, 1929)

∇̄ψD = imψ∗D Eu. (10)

Both equations are of first order, which is why the question of their possible
“equivalence” can arise. However, there is one essential difference: Dirac’s equa-
tion relates the fieldψD to its complex conjugateψ∗D, while Maxwell’s equation
(as well as Proca’s equation for a massive spin 1 particle) do not. This complex
conjugation operation arises naturally when the spin 1/2 and spin 1 field equa-
tions are consistently derived from Lanczos’s fundamental equation (Gsponer and
Hurni, 1998, 2001), and it is intimately connected to the fact that fermions are es-
sentially different from bosons (Gsponer and Hurni, 1994). Indeed, by studying the
time-reversal transformation of (10), one findsT2 = −1, which implies the Pauli
exclusion principle and Fermi statistics (Feynman, 1987; Weinberg, 1998, p. 80).

Therefore, since the spinor representation of the electromagnetic field (5)
involvesψ andψ̄, notψ andψ̄∗, it is impossible to transform Maxwell’s equa-
tions (9) by any algebraic manipulation to get a Dirac equation for the spinorψ,
even if we accept a nonlinear variable mass term.

The complex conjugation operation that is explicit in (10) has a counterpart
in any formulation of Dirac’s equation. Its absence in the standardγ -matrices
formulation or in other Clifford formulations of Dirac’s equation, e.g. (8), needs
therefore to be explained. The reason is that these formulations either use a larger
algebra, so that the complex conjugation in (10) can be avoided, or a “complex
structure” (or “complex geometry”) by which operations on complex numbers are
replaced by algebraic operations on real numbers (De Leo, 2001; This is a recent
example in which ordinary complex numbers are replaced by linear functions of
real quaternions).

For example, in the standardγ -matrices formulation the Dirac algebra
D ∼M4(C) is used instead of the biquaternion algebraB ∼M2(C). Then, the
complex conjugate of the Dirac matrices is given byγ ∗µ = γ0γ

T
µ γ0 where ( )T

denotes transposition, and the “Dirac adjoint”9̄ ≡ 9†γ0 is required instead of9†

in scalar products (see, e.g., Weinberg (1998)). Similarly, Lanczos’s “complex”
formulation of Dirac’s equation (10) can be transformed into the “real” formulation
of Hestenes (1966, see Sections 7 and 13) by using the identificationD∗ = γ0Dγ0

to replace the symbolic complex conjugation operator ( )∗ by the linear func-
tion γ0( )γ0 (see, in particular, Fauser, 2001, where it is shown that this function
provides a link between seemingly inequivalent formulations of Dirac’s equation).
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5. CONCLUSION

By various algebraic transformations it is possible to put Maxwell’s equation
into a form that is very similar to Dirac’s equation. Similarly, it is also possible
to replace the complex conjugation operator that is explicit in the Dirac–Lanczos
equation (10) by an algebraic operation that effectively implements this complex
conjugation. However, the transformed Maxwell equation will still depend on only
six real functions while Dirac’s equation requires eight, and the complex structure
which makes a Dirac particle a fermion rather than a boson will remain an essential
feature of Dirac’s equation.

Indeed, the complex structure inherent to Dirac’s equation corresponds to the
fact that the Dirac field is only meaningful in the context of quantum mechanics
where complex numbers are essential. On the other hand, such a complex structure
is absent in Maxwell’s equation so that Maxwell’s field has a consistent interpre-
tation in the context of classical electrodynamics where complex numbers are not
essential.

There are of course other fundamental differences between the Maxwell and
Dirac equations and their interpretations that are not discussed in this paper (see,
e.g., Good (1957)).

Finally, while practical calculations are made most easily using a formulation
such as the standardγ -matrices, it is important to stress that the Dirac–Lanczos
equation (10) has the considerable didactical advantage to make manifest the
fermionic complex structure that is hidden in Dirac’s original formulation, as well
as in most other ones, e.g., Rodrigues’s (8), or Hestenes’s (Hestenes, 1966).
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